HONEYWELL UOP ZONEFLOWTM / UOP POLYBEDTM PSA RECOVERYMAX

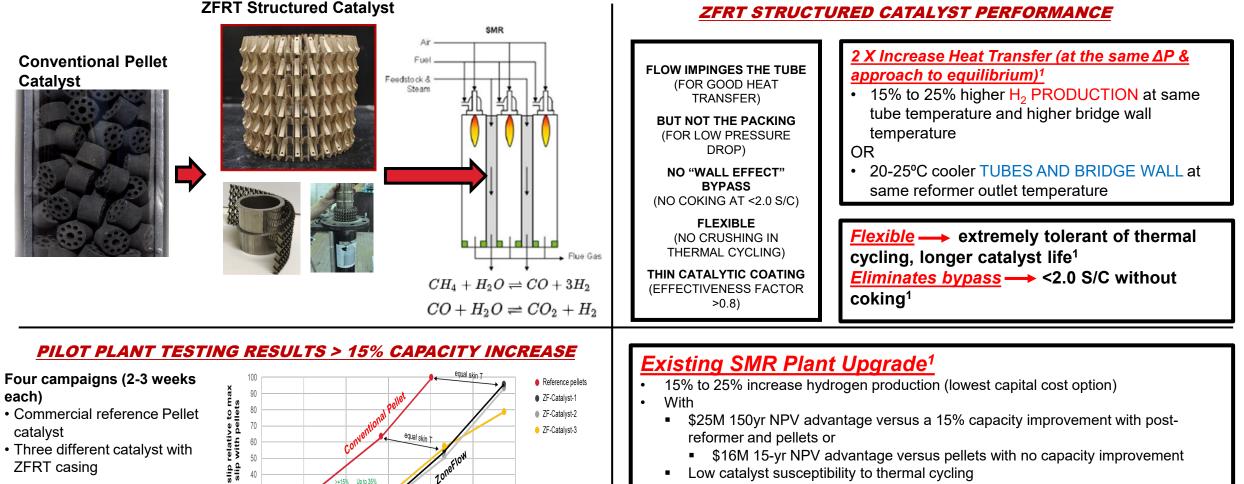
ARPEL/ECOPTEROL

WILLIAM BLASKO SR. OFFERING MANAGER, HYDROGEN

VALENTINA DI MAURO SR. OFFERING MANAGER, NAPHTHA & LOHO

JAN DE REN SR. OFFERING MANAGER, FCC, HYDROPROCESSING & HEAVY OILS

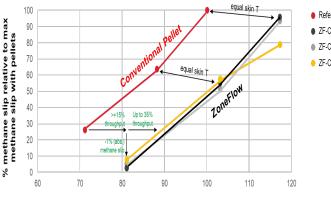
17 October 2023



loneywell UOP

ZoneFlow Structured Catalyst for SMR

ZONEFLOW STRUCTURED CATALYST


Internally developed Techno Economical Analysis using Honeywell UOP developed simulation models. Unisim simulation DD tool and optimisation. Key variables include, stream composition, utility price set, price of H2 of \$1685/MT, natural gas feed of \$327/M uel price (HHV) of \$6.6/MMBTU, and steam HP steam export of \$25.28/MT, cost of capital of 12%, 350 days per year on-stream, and 2022 S gulf coast basis. Also based on the following paper; Florent Minette, Luis Calamote de Almeida, Sanjiv Ratan, Juray De Wilde, 'Pressure rop and heat transfer of ZoneFlow™ structured catalytic reactors and reference pellets for Steam Methane Reforming", Chem. Eng. Journal. 417, 128080, 2021. Juray De Wilde, Gilbert F. Froment, "Computational Fluid Dynamics in chemical reactor analysis and design Application to the ZoneFlow™ reactor for methane steam reforming", Fuel 100, p. 48-56, 2012; and the results from the Pilot Plant Test rogram- Final Report, Feb 2023 delivering the results and conclusions based on detailed simulation and

- Demonstrated increased capacity
- with lower methane slip:
- and same or lower max tube skin temperature;

\$

and Lower pressure drop

% NG flow rate relative to max NG flow rate tested with pellets

- More uniform tube and gas outlet temperature

New SMR Plant¹

- 10% to 15% lower capital costs (smaller radiant and convective zones, fin fans, etc.)
- 2% to 3% lower energy costs

Polybed PSA

Honeywell Confidential - ©2023 by Honeywell International Inc. All rights reserved.

UOP: THE PSA INNOVATION LEADER

UOP invented & patented the **5-STEP** PSA cycle more **1,150**

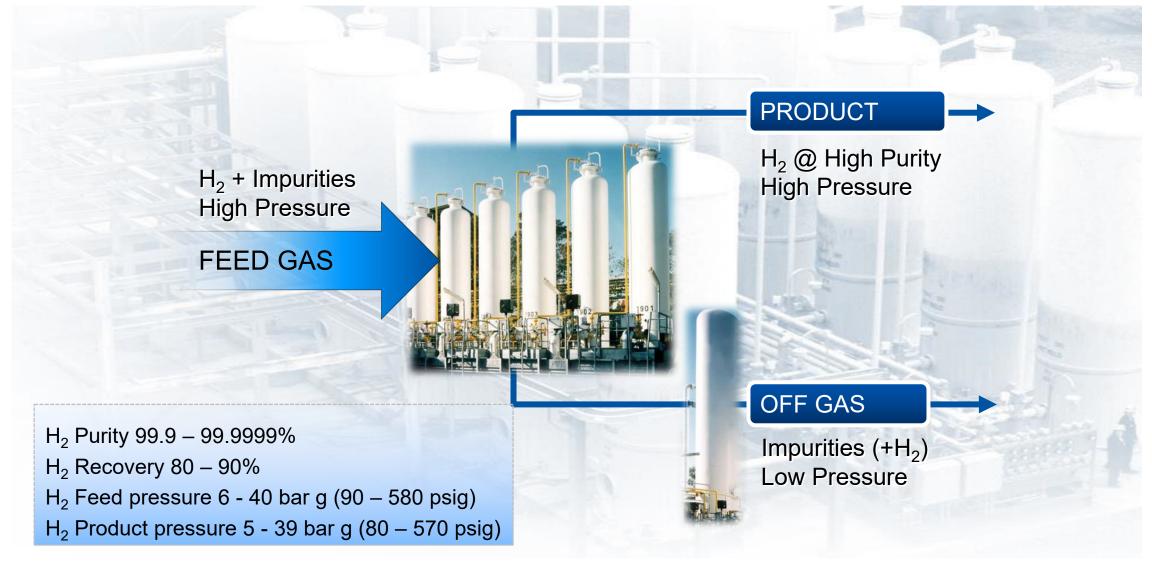
PSA units designed & commissioned into commercial operation worldwide

KIRKPATRICK AWARD 1979

Presented to UOP for the development of Polybed PSA

UOP invented the synthetic molecular sieve adsorbents required to obtain the

99.99+%


H₂ purity required for H₂ applications

5


- PSA technology and performance leader for 50 years
- The first PSA in the world was commissioned in commercial service in 1966
- Experience with all sizes of PSA including
 - The largest single train PSA in the world, which measures 20-beds, and was started in January 2014
 - The largest unit produces more than 253,000 Nm³/hr (226 MMSCFD) product from SMR feed gas using a 14-bed system

After Market Revamps and Service

H2 PURIFICATION – POLYBED[™] PSA

COMPONENTS OF A PSA SYSTEM

(6) UOP Service and Support

7

PSA EQUIPMENT / MODULAR SUPPLY

HYDROGEN PSA APPLICATIONS / EXPERIENCE LIST

13%

Ethylene Off-Gas

No. of Units: 151 Feed Pressure: .03 – 44 bar Feed Flow: 89 – 188,385 Nm³/hr

40%

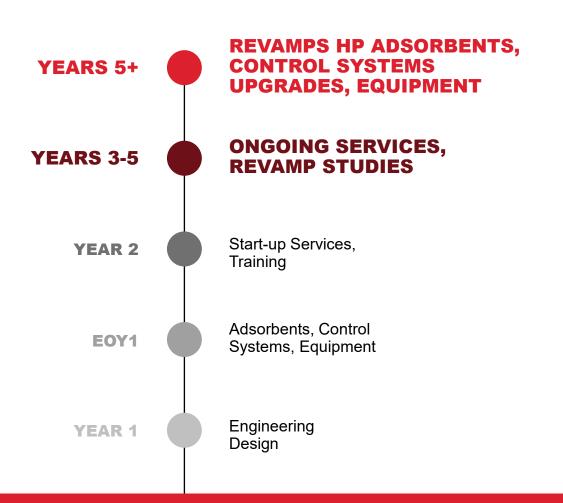
Steam Reformers

No. of Units: 465 Feed Pressure: 1.0 – 64 bar Feed Flow: 134 – 383,650 Nm³/hr

22% Specialty Applications No. of Units 255

Ammonia Plants Coke Oven Gas Gasification Methanol Off-Gas Misc Off-Gas

25%


Refinery Streams

No. of Units: 288 Feed Pressure: 1.4 – 46 bar Feed Flow: 53 – 226,179 Nm³/hr

>1,150 Polybed PSA Units UOP Supplied Worldwide

REASONS TO CONSIDER A REVAMP

- New Product Specifications
- Change in Feed Composition
- Increase H₂ Recovery
- Increase Capacity
- Enhanced Operating Features (switchovers, ...)
- Increased Reliability (older / smaller units)
- Upgrade Control System (obsolescence)
- PSA Health Check
- Vessel inspections

¹ UOP has executed over 3,500 PSA revamp projects Worldwide, which started in the 1980s, where the above benefits of the revamp project were provided or the revamp was due to the above reasons.

Revamps – The perfect way to upgrade your existing unit

REVAMP BENEFITS

REVAMP BENEFITS¹

- · Increased capacity possible with existing equipment
- Shorter schedules
- Lower capital investments

¹ These benefits have been demonstrated by UOP having executed over 3,500 PSA revamp projects worldwide starting from the 1980s, where UOP's revamp customers consistently experienced the above benefits as a result of UOP's revamp of their respective PSA units.

REVAMP DELIVERED AS

- Process Evaluations / Studies
- Adsorbent Replacement: Optimized / Make-up / Partial / Complete
- Control Systems: Upgraded Hardware / Equipment / Software
- Capacity Expansions: Additional vessels / Valves / Piping
- Periodic Health Check:
 - Adsorbent / Control Panel / Auto Valve / Overall Unit Performance

UOP has been providing on-going revamp support for more than 25 years

NEW HIGH-PERFORMANCE ADSORBENT SMR & ROG/EOG PSA UNITS

General Observations¹

+1% to +2% INCREASE

in H₂ recovery at same Product spec / CO slip

5 to 15 % INCREASE in unit capacity in some cases

¹ For details on the recovery and capacity increase for the SMR (Steam Methane Reformer) applications see the following slide 11 of this presentation and for details on the recovery and capacity increase for ROG (Refinery Off-Gas) and EOG (Ethylene Off-Gas) applications see the 2nd slide from this slide - slide 12.

FIELD RESULTS - SMR PSA UNITS NEW HIGH-PERFORMANCE ADSORBENT

UNIT A – SOUTHEAST ASIA

UNIT B – EASTERN EUROPE

10-bed PSA system 10-bed PSA system ٠ ٠ SMR feed UNIT UNIT SMR feed . 65 000 Nm3/h feed gas ٠ 73 300 Nm3/h feed gas • ORIGINAL **DRIGINAL** 32 bar q ٠ 24.5 bar q • Design Recovery 87.0% ٠ Original Design Recovery 89.0% ٠ 20 ppm v CO 50 ppm v CO ٠ Measured Recovery > 87.0% **RELOADED WITH NEW HIGH-PERFORMANCE** RELOADED WITH NEW HIGH-PERFORMANCE **ADSORBENTS IN MAY 2018** ADSORBENTS IN SEPTEMBER 2017 Guaranteed Recovery 90.0%¹ Measured Recovery 91.5%³ ٠ • 18% increase in K_{E} (capacity)¹ **Guaranteed Recovery 90.0%**³ • 8.5% increase in K_{F} (capacity)³ ٠ Additional revenue of <u>\$1.2M²</u> per year based on Additional revenue of <u>\$2.0M²</u> per year based on recovery improvement only recovery improvement only 1. Based on the guaranteed recovery and capacity performance provided by UOP on the original designed PSA unit and the guaranteed recovery and

capacity performance provided by UOP on the revamp design PSA unit.

2. The additional revenue from the recovery increase only using a \$1,200/MT price for hydrogen and 8400 operating hours per year.

3. Based on actual operating data from the original designed PSA unit and operating data from the revamp designed PSA unit after the adsorbent

reload with high performance adsorbents. Details on the actual data from the revamp designed PSA unit was provided in a Performance Test Report.

Better than original performance on Recovery by 1% & 3%

NEW HIGH-PERFORMANCE ADSORBENT ROG/EOG PSA UNITS

OPERATING UNIT

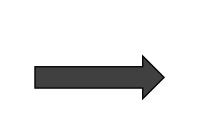
99.9 mol% H₂ -**99.9 mol% H**₂. **Up to 1.5%** 1,000 ppmv C1 1,000 ppmv C1 **Additional** Hydrogen **High Perf. NEW HP Ads. D in top layer Recovery**¹ \rightarrow Higher C1 capacity Ads. D Main Ads. C Adsorbent **Up to 15% IMPROVED** HP Ads. C High Perf. (C1 removal) **Additional** \rightarrow Higher C1, C2 capacity Ads. C Hydrogen **Purification** Ads. B Protective Ads. B Capacity¹ Layer (C3+ (Throughput) removal) Ads. A Ads. A **TYP. ROG FEED TYP. ROG FEED** 88 mol% H2 88 mol% H2 5 mol% C1 5 mol% C1 4 mol% C2 4 mol% C2 2 mol% C3 2 mol% C3 1 mol% C4+ 1 mol% C4+

PROPOSED RELOAD

Estimated <u>\$6.1M</u> of additional revenue per year (based on recovery and capacity improvement)²

1. Based on a UOP pilot plant tests results conducted by UOP in 2019 & 2020 at its own facilities, confirming the improved performance in terms of recovery and capacity of the high-performance molecular sieve and carbon (C1) adsorbents. 2. The additional revenue from the recovery and capacity increase using a \$1,200/MT price for hydrogen and 8400 operating hours per year.

Improved Recovery & Productivity – New High-Performance Adsorbents


POLYBEDTM PSA CAPACITY EXPANSION REVAMP

UNIT

DRIGINAL

UNIT A – INDIA

- 12-bed PSA system
- ROG feed
- 144,305 Nm³/h feed gas
- 26.5 kg/cm² g
- Original Design Recovery 86.0%
- 99.9 mol% H₂ purity
- Supplied in 2010

- 16-bed PSA system
- ROG feed (different concentrations)
- 191,927 Nm³/h feed gas
- 25.8 kg/cm² g
- Original Design Recovery 90.0%
- 99.9 mol% H₂ purity
- Suppied in 2022

PSA CYCLE CHANGE 12-BED TO 16-BED EXPANSION

- Increased recovery 4% points to 90% recovery¹
- Increased feed capacity 33%¹
- No change to adsorbent split
- Provided 4-bed skid extension

Additional revenue of <u>\$30M</u> per year based on recovery and capacity improvement²

Improvement on recovery versus pre-revamp Unit by ~ 4%

1.Based on internal simulation model and project documentation.

UOP 8445K-11 2. The additional revenue based on using a \$1,200/MT price for hydrogen and 8400 operating hours per year.

NEW DESIGN

POLYBEDTM PSA IMPROVED TOP FLOW DISTRIBUTOR

New Improved Design

- Improved flow distribution
- Wedged wire screen instead of mesh
- Rugged design with reinforcements
- Even further reduced risk of a failure
- Easy one on one replacement
- No vessel modifications required

HOW TO UPGRADE

- There is no direct need of immediate replacement of the existing distributors
- In order to ensure trouble free operation beyond the design life and to upgrade internals to UOP's latest offering to enhance mechanical reliability, we highly recommend replacement of the Top Flow Distributors during next scheduled vessel inspection or during an adsorbent reload

1. Advantages of new top flow distributor design for Polybed PSA have been confirmed by the results of CFD (Computational Fluid Dynamics) performed on the improved top flow distributor modeling in March of 2009. In addition, a metallurgical examination was completed by a 3rd party (Praxair) in 2012 to verify the new top flow distributor design improvements versus the old top distributor design. In addition, UOP has supplied this new top flow distributor model on over 150 PSA units since 2013 without any known issues reported to UOP to date by the customers related to the new model of the top flow distributor.

UOP 8445K-10

CONTROLS RELIABILITY AND AVAILABILITY ENHANCEMENT

CUSTOM CONTROL SYSTEM SOLUTIONS

- Full replacement or upgrade of obsolete Control System
- Fully redundant control system hardware and communications
- Fast Trending HMI station with comprehensive fault detection diagnostics

HONEYWELL EXPERION C300 SOLUTION

- Integrate PSA with Honeywell Experion PKS using UOP's Honeywell C300 control system and Experion HMI Web PSA graphics
- Fully integrated DCS control replacing PLC-DCS interface

HMI STATION UPGRADES AND SPARES

- Replacement of obsolete HMI PC and Software upgrades
- Upgrade HMI station communication set up
- Control System spares to improve process unit on-stream performance and decrease process upsets

PSA HEALTH CHECKUP

WHY WE NEED A HEALTH CHECKUP?

- To Avoid Unexpected Shutdown
- Improve On-Time Availability
- Improve Performance
- Timely Procurement of Spare Parts
- Advance Maintenance Planning

Proactive Maintenance Has a Real Impact on Profitability

TYPICAL SCHEDULE FOR PLANNING PURPOSES

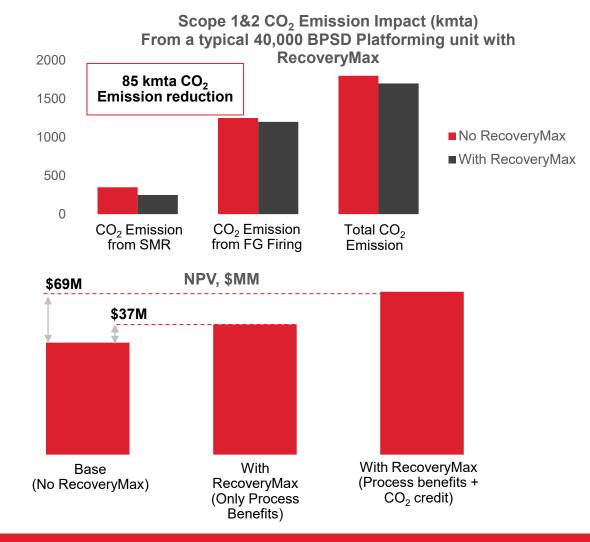
- Adsorbents up to 6 months of port of export
- Phase 1 (Engineering) Studies 3 months
- Control Systems Retrofits 12 months or more
- Control System and HMI upgrades 4-10 months
- Phase 2 (Implementation) 6 to 12 months

RecoveryMax

RECOVERYMAX

WHAT IS RECOVERYMAX?

- An energy efficient system to recover high value products from Platforming gases
- Plays pivotal role for refinery H₂ balance
- Modular supply revamp option (integrated or independent)
- 12 references, 2 of those delivered as a Modular solution

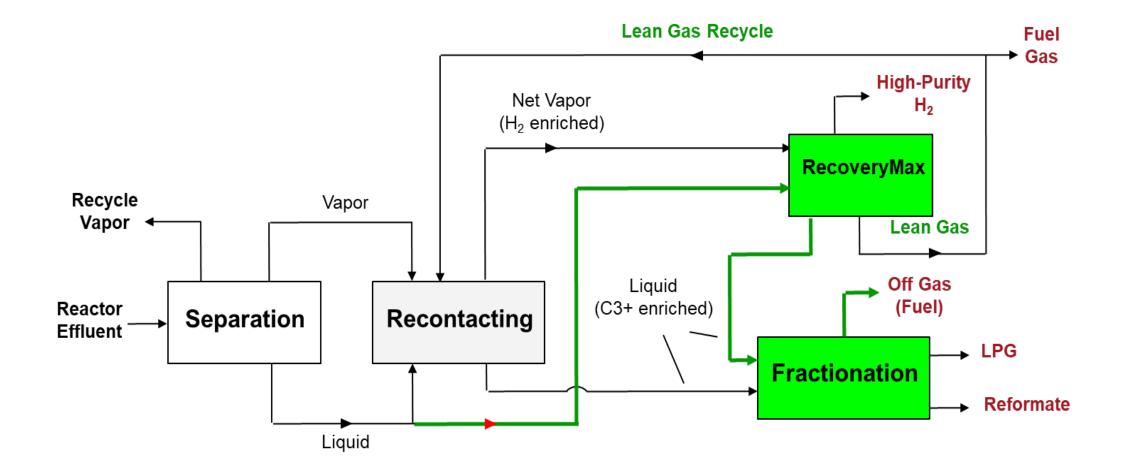

ECONOMIC RETURN AND EMISSION REDUCTION

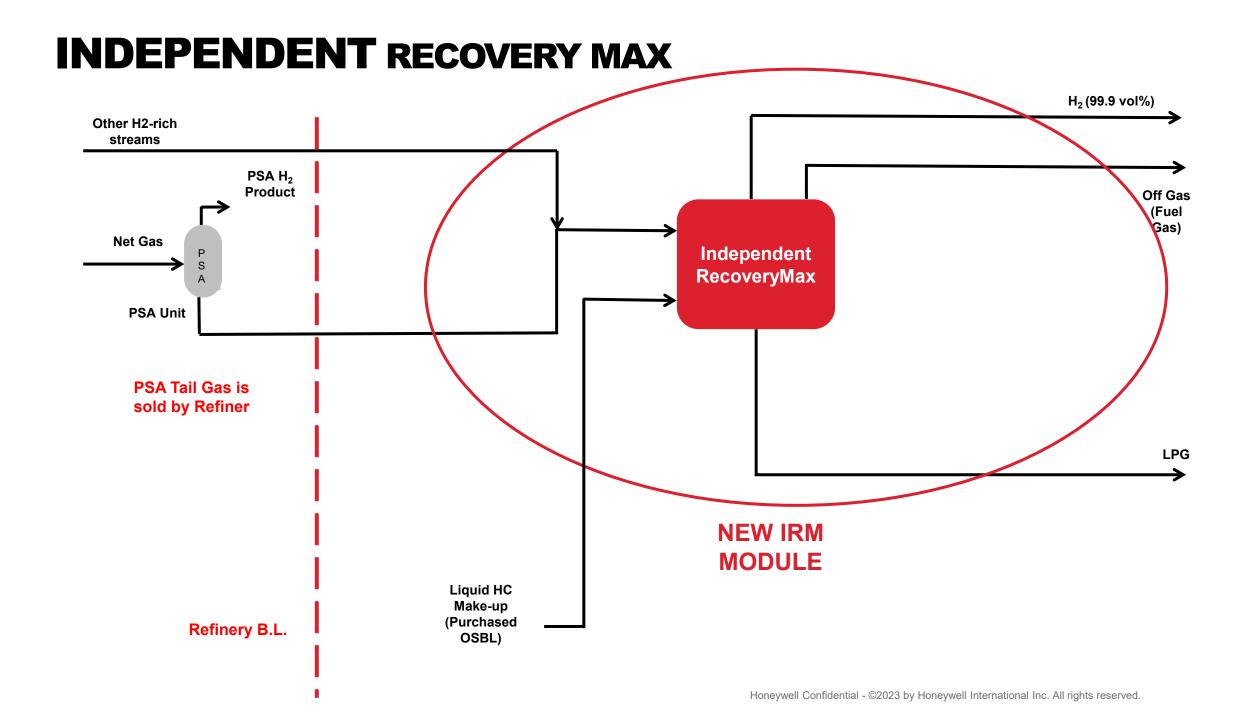
Enables higher economic return

- ~10% higher H₂ recovery
- ~30% higher LPG recovery
- ~0.5% higher reformate production

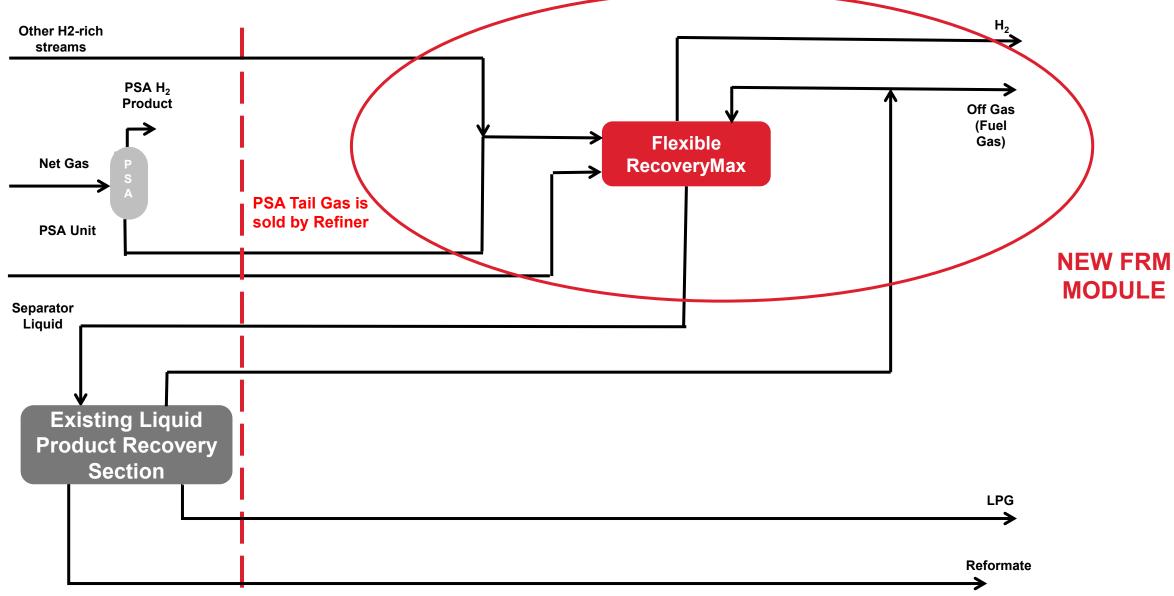
A cost-effective choice for CO₂ emission reduction¹

- Improve $\rm H_2$ supply from low-emission source and reduce need of SMR $\rm H_2$
- Improve refinery fuel gas quality by enhanced C_3/C_4 recovery




RecoveryMax Reduces Scope 1 & 2 Emissions while improving profitability

Notes:

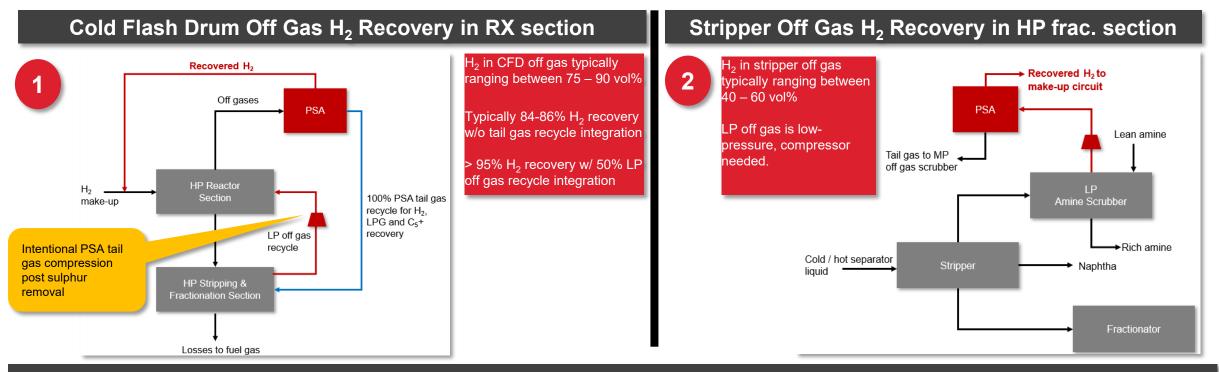

3 85kmta CO₂ reduction is based on UOP internal calculation for a typical refinery H₂ and fuel gas balance where SMR is being fed by NG and is a primary H₂ source to meet refinery process requirements

RecoveryMaxTM SIMPLIFIED PROCESS FLOWS

FLEXIBLE RECOVERY MAX

Refinery B.L.

Honeywell Confidential - ©2023 by Honeywell International Inc. All rights reserved.


INDEPENDENT RECOVERY MAX PROFITABILITY EXAMPLE

Stream	In/Out	Flow Rate, KMTA	Value \$/T	Value M\$/y
External Gas to IRM	In	158.5	200	31.7
Liquid Hydrocarbon Make up to IRM	In	0.1		
Hydrogen (99.9vol%) from IRM	Out	7.4	1100	8.1
Off Gas from IRM	Out	103	200	20.6
LPG from IRM	Out	48	500	24
Net Value Increase				21

- TIC : 40 MMUSD
- Utility : 4 MMUSD/Y
- PayBack : 2.5 Years

H₂ Management in Hydrocracking

HYDROPROCESSING (HP) H₂ MANAGEMENT

Hydrocracker H₂ Management Options – H₂ recovery in RX & Fractionation Section

- Option 1 Addition of a PSA in RX and/or fractionation section
- Option 2 Addition of a Membrane (PolySep) in RX and/or fractionation section

Endeavor combining H₂ recovery into 1 central PSA or Membrane unit

Hydroprocessing H₂ recovery is a key enabler for overall refinery profitability

HYDROCRACKER H_2 MANAGEMENT VIA H_2 RICH OFF GAS RECOVERY

- **Option 1** PSA to process Cold Flash Drum and/or LP amine stripper off gas
 - Typical 84 86% H₂ recovery w/o PSA tail gas integration & >95% H₂ recovery w/ PSA tail gas integration
 - High purity H₂ (> 99.9 vol%)
 - Recovered H₂ recycled to the Makeup Gas Compressor [MUG]
 - Reduced fresh H_2 demand (make-up) by 10%
 - Increased LPG & C₅+ production by sending PSA tail gas to sponge absorber, in lieu of refinery fuel gas
 - Reduce CO_2 emissions from SMR by lower requirement on-purpose H₂ production
- Option 2 adding Membrane is a lower cost option
 - Typical H_2 recovery is ~ 98% (higher than PSA)
 - Hydrogen purity is lower (96 vol%)
 - Membranes need frequent element replacement and have had operational issues
- Both PSA and membrane can be independently constructed and tied in during hydrocracker turnaround

Hydroprocessing H₂ recovery is a key enabler for overall refinery profitability

CASE STUDY - HC CFD OFF GAS PSA ECONOMICS

- Basis 2,000,000 MTA hydrocracking unit with VGO feed
- Hydrogen requirement 2.5 wt%, 50,000 MTA
- Cold flash drum purge 1.03 wt%, 20,624 MTA valued at \$200/t as Fuel Gas
- CAPEX of PSA \$5 M

Benefit	Recovery	kMTA	Delta \$ Value	\$ MM/yr
H ₂ Recovery	86%	6,439	\$1,300	5.7
LPG recovery	86%	6,984	\$200/t	1.4
C ₅ + recovery	100%	1,624	\$500/t	0.8
Carbon credits		53,000	\$50/t	2.7
Additional utilities	-	-	-	(1.0)
Total w/o CC	-	-	-	6.9
Total w/ CC	-	-	-	9.6
Payback w/o CC				~ 7 months
Payback w CC				~ 5 months

H₂ recovery from Hydrocracking Improves Refinery Profitability

Assumptions – 1) 86vol% H₂ recovery in PSA, 2) 50% LPG in PSA tail gas and 86% recovery, 3) 10% C₅+ in PSA tail gas and 100% recovery.

FOR YOUR PARTICIPATION